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ABSTRACT

Objective: Breast cancer clinical stage and nodal status are the most clinically significant drivers of patient management, in combination with other 
pathological biomarkers, such as estrogen receptor (ER), progesterone receptor or human epidermal growth factor receptor 2 (HER2) receptor status 
and tumor grade. Accurate prediction of such parameters can help avoid unnecessary intervention, including unnecessary surgery. The objective was 
to investigate the role of magnetic resonance imaging (MRI) radiomics for yielding virtual prognostic biomarkers (ER, HER2 expression, tumor grade, 
molecular subtype, and T-stage). 

Materials and Methods: Patients with primary invasive breast cancer who underwent dynamic contrast-enhanced (DCE) breast MRI between July 
2013 and July 2016 in a single center were retrospectively reviewed. Age, N-stage, grade, ER and HER2 status, and Ki-67 (%) were recorded. DCE images 
were segmented and Haralick texture features were extracted. The Bootstrap Lasso feature selection method was used to select a small subset of optimal 
texture features. Classification of the performance of the final model was assessed with the area under the receiver operating characteristic curve (AUC).

Results: Median age of patients (n = 209) was 49 (21–79) years. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 
the model for differentiating N0 vs N1-N3 was: 71%, 79%, 76%, 74%, 75% [AUC = 0.78 (95% confidence interval (CI) 0.72–0.85)], N0-N1 vs N2–N3 
was 81%, 59%, 24%, 95%, 62% [AUC = 0.74 (95% CI 0.63–0.85)], distinguishing HER2(+) from HER2(-) was 79%, 48%, 34%, 87%, 56% [AUC = 
0.64 (95% CI 0.54–0.73)], high nuclear grade (grade 2–3) vs low grade (grades 1) was 56%, 88%, 96%, 29%, 61% [AUC = 0.71 (95% CI 0.63–0.80)]; 
and for ER (+) vs ER(-) status the [AUC=0.67 (95% CI 0.59–0.76)]. Radiomics performance in distinguishing triple-negative vs other molecular subtypes 
was [0.60 (95% CI 0.49–0.71)], and Luminal A [0.66 (95% CI 0.56–0.76)].

Conclusion: Quantitative radiomics using MRI contrast texture shows promise in identifying aggressive high grade, node positive triple negative breast 
cancer, and correlated well with higher nuclear grades, higher T-stages, and N-positive stages.

Keywords: Breast cancer; radiomics; texture analysis; biomarkers; predictive models

Eur J Breast Health 2024; 20(2): 122-128

Introduction

Breast cancer is the most commonly diagnosed cancer and leading 
cause of cancer deaths among women (1). Multiple factors impact 
prognosis, including patient age, tumor size, type and grade, and lymph 
node status (2-5). In recent years, estrogen receptor (ER), progesterone 
receptor (PR) and human endothelial growth factor receptor 2 (HER2) 
status have emerged as important molecular biomarkers in staging breast 
cancer and guiding treatment decisions regarding hormonal and targeted 
therapies, neoadjuvant chemotherapy, or upfront surgery (2, 6). Triple 

negative breast cancer (TNBC) is associated with poor prognosis and 
decreased survival (7, 8), while targeted therapies in receptor positive 
breast cancer improve outcomes (9, 10). The status of ER, PR and 
HER2 is determined by immunohistochemistry analysis of individual 
biopsy samples via well-established protocols (11, 12). However, due 
to intra-tumoral heterogeneity within the primary lesion and inter-
tumoral heterogeneity between the primary cancer and its metastases, 
incisional biopsy results may not be representative of the whole tumor 
(13, 14). A non-invasive method for evaluating tumor biomarkers may 
be useful for detecting heterogeneity and assist as a clinical decision 
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support tool throughout the continuum of patient care from detection 
to adjuvant therapies.

Metastatic status of axillary lymph nodes is an important prognostic 
marker, guiding therapy in newly diagnosed breast cancer (6). Sentinel 
lymph node biopsy (SLNB) is the mainstay method for evaluating 
axillary lymph node metastasis but SLNB is invasive and associated 
with morbidity (15). Implementation of a preoperative assessment of 
axillary lymph nodes with imaging may help avoid SLNB in some 
cases (15-20). Physical examination, mammography, breast ultrason 
and fine needle aspiration biopsy provide limited sensitivity and 
specificity in assessment of axillary lymph nodes and cannot reliably 
exclude the need for SLNB (15, 17-22). Dynamic contrast-enhanced 
(DCE)-magnetic resonance imaging (MRI) has been reported to be 
the most accurate method of evaluating disease extent (23-25). DCE-
MRI also allows assessment of the axillary and internal mammary 
nodes for metastatic disease. However, it also has modest sensitivity 
and negative predictive value (NPV) at 80% and 60%, respectively, for 
detection of axillary lymph node metastasis (15, 20, 25, 26).

Textural kinetics are quantitative imaging features that describe the 
dynamic variation of textural features of breast lesions during contrast 
material uptake and can outperform standard morphologic, static 
texture, and kinetic intensity features in the differentiation of benign 
and malignant lesions (27). Textural heterogeneity on MRI correlates 
with histopathological tumor heterogeneity and shows a positive trend 
for correlation with prognostic markers such as ER, PR or HER2 
positivity, and prognostic scores such as Oncotype Dx or PAM50 
(28, 29). Several studies have shown that MRI imaging features are 
associated with molecular breast cancer subtypes (28-32). The results 
of these studies offer a possible framework in which to explore textural 
features as biomarkers of clinically relevant prognostic indicators.

In this study, we aimed to investigate the potential role of DCE-MRI 
texture radiomics for identification of virtual prognostic biomarkers 
for ER, PR and HER2 expression, tumor grade, molecular subtype, 
clinical T and N stage. 

Materials and Methods

In this institutional review board-approved and HIPAA-compliant 
(Health Insurance Portability and Accountability Act) study, 
consecutive patients with primary invasive breast cancer who 
underwent breast DCE-MRI between July 2013 and July 2016 in 
our institution were retrospectively reviewed. Age, tumor size (T1–4), 
regional nodal metastasis (cN1, cN2, cN3) and tumor stage (I-IV) 
information was collected from electronic medical records. Treatments 
that each patient received, response to treatment (pathological 
complete response vs partial response vs stable disease) and residual 
cancer burden (I-III) were collected. Tumor grade (grade 1, 2 or 3), ER 
status (ER positive or ER negative), HER2 status (HER2 amplified vs 
HER2 non-amplified) and Ki-67 (low, intermediate, or high) status 
was obtained from pathology reports. American Society of Clinical 
Oncology/College of American Pathologists criteria were followed 
in the assessment of ER, PR, HER2 and Ki-67 positivity. Molecular 
subtypes were defined, based on previously published criteria: Luminal 
A (ER+ and/or PR+, Ki-67<14%), Luminal B (LuminalB-HER2-: 
ER+ and/or PR+, Ki-67≥14%; LuminalB-HER2+: ER+ and HER2+ 
regardless of Ki-67), HER2+ (ER and PR-, HER2+), and TNBC (TN, 
or ER-, PR-, HER2-). The significance of PR expression in the absence 
of ER expression in tumors is unclear as ER+ ty dominates tumor 

biology and prognosis. In addition, ER expression is the predominant 
determinant of tumor molecular subtype per The American Joint 
Committee on Cancer (AJCC) 8th edition classification of tumor 
subtype and stage (AJCC 8th ed) (33).

DCE-MRI Technique

All MRI studies were performed with the patients lying prone in a 
1.5 T scanner (OptimaTM MR450w; GE Healthcare, Milwaukee, 
WI, USA) using a dedicated 8–channel breast array coil (MRI Devices 
Corporation, Pewaukee, WI, USA). A single pre-contrast and four serial 
bilateral dynamic VIBRANT sagittal image sets, which were obtained 
before and immediately after rapid intravenous bolus infusion of 0.1 
mmol/kg gadopentetate dimeglumine contrast medium (Magnevist; 
Bayer HealthCare Pharmaceuticals Inc., Wayne, NJ, USA) at a 
rate of 3 mL/s with a power injector (Spectris Solaris MR Injector; 
MEDRAD, Warrendale, PA, USA), with an average dynamic temporal 
resolution of 90 s/phase (range 60-120 s, depending on patient size 
and full bilateral breast coverage), TR/TE 5.59–7.2/1.7–18 ms, field 
of view 18–26 cm, matrix 256 × 256, FA 10, and slice thickness/gap 
1.8/0.9 mm.

Image Processing and Extraction of Texture Features

All MRI images were loaded into Horos with OsiriX plugin (Pixmeo 
SARL, Geneva, Switzerland), on a secured dedicated research 
computer. The series was de-identified using the RSNA Clinical 
Trial Processor (34) and stored in a research PACS (iPACS, Invicro, 
Boston, MA, USA). Lesions were segmented using regions-of-interest 
(ROIs). When multiple cancers were present, the index lesion, which 
was used to clinically stage the patient, was used. ROIs were drawn 
manually by a breast imaging fellow with 1 year of experience in MRI 
imaging and interpretation, supervised by a fellowship-trained breast 
imager with 16 years of MRI imaging experience to indicate the lesion 
of interest. When possible, the ROIs were centered in each slice on 
areas of contrast uptake with no visible necrotic areas. Necrotic areas 
were excluded from the texture analysis, as only metabolically active 
regions of tumor are of interest in comparing prognostic subtypes. The 
ROI size was chosen individually to balance the need for sufficient 
voxel statistics and maximum lesion coverage. The stack of ROIs was 
also used to generate morphological measures of the lesion. Haralick 
texture features were extracted using MATLAB (2015, version 8.5, 
R2015a, The MathWorks Inc., Natick, MA, USA). For Haralick 
texture features, distance was set at 1 pixel and features were averaged 
across all angles under the isotropic assumption.

Statistical Analysis

All features were grouped with an unsupervised Principal Component 
analysis (PCA)-like procedure. Similar features were grouped into 
disjoint clusters with a linear combination (corresponding to first 
principal component). The relationship between lesion and patient 
characteristics were investigated by Pearson correlation test and 
correlation is shown as a heat map (Figure 1).

A soft version of the Bootstrap Lasso (Bolasso) feature selection method 
was used. Specifically, 500 replicates of the data with simple random 
sample with replacement was generated. In each replicate, features 
were selected using Lasso with regularization parameter rho = 0.8. The 
importance of features was evaluated by the selection frequencies over 
the bootstrap samples. The final selected model consisted of features 
that were present in at least 80% of the bootstrap replications and was 
evaluated by a receiver operator curve (ROC) analysis under leave-one-
out (LOO) cross validation. A cut-off on the ROC curve was proposed 
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by maximizing the Youden index. Corresponding accuracy, sensitivity, 
specificity, positive predictive value (PPV) and NPV were calculated 
with 95% confidence intervals.

ROC analysis was used to compare associations between the cluster 
components and clinical outcomes adjusted for age and race. Area 
under the curve (AUC) values were calculated with LOO cross 
validation. Diagnostic performance of the cut-off was calculated. 
Statistical software used was SAS, version 9.4 (SAS Institute Inc., Cary, 
NC, USA). The significance level was 0.05 and Bonferroni correction 
was used for multiple comparisons, when necessary.

Results

Patient and Lesion Characteristics

Two hundred and eight patients with breast cancer underwent breast 
MRI and are included in the study. Median (range) patient age was 
49.8 (21–79) years. Median T, N and M stages of the lesions were T2, 
N0 and M0 respectively (46.6%, 54.3% and 83.7%). Mean Ki-67 
expression was 42.2%. Further patient (race, age) and lesion [grade, 
classification of malignant tumors (TNM) stage, Ki-67 expression, ER 
and HER2 status] characteristics are summarized in Table 1.

Texture Parameter Clustering

Texture parameters that had highest correlation with prognostic 
factors, determined by Pearson correlation test, were grouped under 
three main clusters. Each cluster included the following parameters:

• Cluster 1 Total, correlation, sum of entropy, entropy.

• Cluster 2 Angular second moment, correlation difference variance, 
difference entropy and information measure of correlation 2.

• Cluster 3 Maximum, minimum, standard deviation, mean, contrast, 
sum of squares, inverse difference moment, sum average and sum 
variance. 

Further correlations between the parameters are shown as a heat map 
in Figure 1.

Prediction of Tumor Grade and Stage

The Cluster 1 model showed the highest performance in predicting 
tumor grade, clinical nodal stage, and T stage of breast tumors (AUC 
= 0.709, 0.782 and 0.789 respectively). T stage of the tumors [T1–
T2 (n = 138) vs T3–T4 (n = 70)] is predicted with 58% sensitivity, 
90% specificity, 75% PPV, 80% NPV and 79% accuracy with this 
model [AUC = 0.789, 95% confidence interval (CI) 0.718–0.860]. 
Moderate-to-high sensitivity (71%), specificity (79%), PPV (76%), 
NPV (74%) and accuracy (75%) was observed in predicting the 
presence of clinically evident regional lymph node metastasis on the 
optimal cut-off point of the Cluster 1 model [cN0 (n = 113) vs cN1–3 
(n = 95)] (AUC = 0.782, 95% CI 0.715–0.850). High-grade tumors 
(grade 2 or 3, n = 171) can be detected with the Cluster 1 model 
with high specificity (88%) and PPV (96%), but sensitivity (56%), 
NPV (29%) and accuracy (61%) were moderate, at best (AUC = 
0.709, 95% CI 0.626–0.792) at the optimal cut-off points (Figure 
2). Nodal metastasis (N0 vs N1 3) was predicted with 71% sensitivity, 
79% specificity, 76% PPV and 74% NPV and 75% accuracy (AUC 
= 0.782, 95% CI 0.715–0.849). Higher sensitivity (81%) and NPV 
(95%) can be achieved for N0–N1 vs N2–N3 (AUC = 0.739, 95% CI 
0.632–0848) (Figure 3).

Prediction of Molecular Biomarker Expression and Molecular 
Subtype

The Cluster 1 model also had the best performance in detecting ER, 
HER2 and Ki-67 expressions of breast tumors (AUC = 0.670, 0.636 
and 0.589, respectively), compared to the Cluster 2 and 3 models. 
In predicting ER positive disease (n = 150), the model had 67% 
sensitivity, 67% specificity, 85% PPV, 43% NPV and 67% accuracy 
(AUC = 0.670, 95% CI 0.585–0.755). HER2 positivity (n = 50) in the 
tumor can be detected with moderate-to-high sensitivity (79%) and 
NPV (87%), and moderate-to-low specificity (48%), PPV (34%) and 
accuracy (56%) (AUC = 0.636, 95% CI 0.523–0.729). However, the 
Cluster model 1 was not a significant predictor for Ki-67 expression 
(n = 73) (<14% vs. >14%) in breast cancer, with low sensitivity (54%) 
and specificity (68%) (AUC = 0.589, 95% CI 0.486–0.692).

Cluster 1 had 74% sensitivity, 63% specificity and 94% NPV for 
distinguishing Luminal A tumors (n = 31) from other molecular 
subtypes (AUC = 0.658, 95% CI 0.556–0.759), whereas it was not 
a significant predictor for Luminal B (n = 119), TNBC (n = 40) or 
HER2+ (n = 18) molecular subtypes.

Prediction of Tumor Aggression

The Cluster 1 model showed the best performance in detecting 
late-stage, aggressive breast cancer (grade 2–3+T3-4+HER2+/Triple 
negative vs grade 1, T1–2, Luminal A or B) (AUC = 0.820 and 0.724 
respectively). In detecting high grade, HER2 positive disease with 
lymph node metastases (grade 2–3+HER2+, and N1–3) it showed 
78% sensitivity, 74% specificity, 94% NPV and 74% accuracy (AUC 
= 0.820 95% CI 0.728–0.913). In distinguishing high-grade TNBC 
with nodal metastases (biologically aggressive) from other subtypes, 
the Cluster 1 model had 100% sensitivity and NPV, with moderate-
to-low specificity (42%), PPV (11%) and accuracy (46%) (Figure 4). 

Figure 1. Principle component analysis is performed and Pearson 
Correlation Coefficients between parameters are depicted above. 
Linear combination is used to create clusters grouping similar 
features
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Diagnostic performance of Cluster 1 model in predicting various 
prognostic parameters at the selected cut-off points is further 
summarized in Table 2.

Discussion and Conclusion

These results show that quantitative radiomic models can be helpful 
in excluding clinically aggressive disease and in predicting tumor 
stage and grade, which can potentially help with clinical management 
decisions. N-stage is one of the most important markers to be able to 

predict, as reliable pre-operative image-based prediction of N-stage can 
help to avoid SLNB, an invasive procedure. A positive nodal status will 
also change the management significantly, indicating an axillary lymph 
node dissection. An additional clinical scenario may be the use of this 
technology as a “tie-breaker” in the setting of high surgical risk (co-
morbidities, age, etc.). Our model achieved 81% sensitivity and 95% 
NPV in predicting advanced nodal stage (N0–1 vs. N2–3) of breast 
cancer. Determining nodal status requires dedicated imaging and 
needle guided biopsy which incurs extra cost and procedure-related 
morbidity for the patient. Our model shows promise as a practical 
clinical decision support tool. Using our model, 67/95 (71%) of the 

Table 1. Lesion and patient characteristics

Frequency 
(n = 208)

Grade

1 37 (17.8%)

2 77 (37%)

3 94 (45.2%)

T-stage

T1 41 (19.7%)

T2 97 (46.6%)

T3 47 (22.6%)

T4 23 (11.1%)

N-stage

N0 113 (54.3%)

N1 65 (31.3%)

N2 13 (6.3%)

N3 17 (8.2%)

M-stagea
M0 174 (83.7%)

M1 13 (6.3%)

Molecular subtype

HER2 positive 18 (8.7%)

Luminal A 31 (14.9%)

Luminal B 119 (57.2%)

Triple negative 40 (19.2%)

Ki-67 status

Mean 42.2% (SD: 26.2%)

0–15% 50 (24%)

16–25% 26 (13%)

26–35% 26 (13%)

36–45% 21 (10%)

>46% 85 (41%)

ER status
Negative 58 (27.9%)

Positive 150 (72.1%)

HER2 status
Negative 158 (76%)

Positive 50 (24%)

Patient race

Asian 7 (3.4%)

Black 66 (31.7)

Hispanic 110 (52.9%)

Non-hispanic white 25 (12%)

Patient age Mean 49.8 (SD: 10.8)

Upfront surgeryb
No 124 (59.6%)

Yes 82 (39.4%)

HER2: Human epidermal growth factor receptor 2, ER: Estrogen receptor, 
PR: Progesterone receptor, SD: Standard deviation

Figure 2. ROC (blue line) was performed for Cluster 1 model, and 
the figure shows the performance of our model in predicting tumor 
grade (grade 1 vs. 2–3). The area under curve is 0.7098 with p<0.05

ROC: Receiver operator curve

Figure 3. ROC (blue line) was performed for Cluster 1 model, and 
the figure shows the performance of our model in predicting nodal 
metastasis (N0 vs. N1–3). The area under curve is 0.7822 with p<0.05

ROC: Receiver operator curve
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clinically node-positive (N1–3) patients could be accurately diagnosed 
without the need for additional imaging or biopsy.

Clinically aggressive disease (grade 2–3+ Triple-negative+ N1–3) was 
detected with 100% sensitivity and 100% NPV with our model (AUC 
= 0.724). High sensitivity (78%), specificity (73%) and NPV (96%) 
were also achieved in predicting high-grade HER2+ breast cancer 
with nodal metastasis (grade 2–3+HER2+, and N1–3). Our results 

are promising and can be further developed as a reliable pre-operative 
decision support tool, which may help guide management decisions at 
initial diagnosis and throughout the treatment continuum.

Our model showed good performance in predicting T-stage (AUC = 
0.789) and grade (AUC = 0.709) of breast tumors. For instance, high 
specificity and PPV (88% and 96% for grade and 90% and 75% for 
T-stage) were demonstrated in differentiating low (grade 1) vs high-
grade (grade 2–3) breast cancers and T-stage. In combination with 
nodal stage, these results can further contribute to the preoperative 
management decision making, particularly chemotherapy versus 
upfront surgery.

Evaluation of molecular marker expression in breast cancer with 
MRI texture analysis may allow monitoring of changes in biomarker 
expression over time or after interventions, such as neoadjuvant 
chemotherapy, as well as resolving the problems related to tumor 
heterogeneity. Our model had moderate performance in detecting ER 
(AUC = 0.670), HER2 (AUC = 0.636) and Ki-67 (AUC = 0.589) 
expression in breast cancer and detecting molecular subtypes (AUC = 
0.658 for luminal A) but was not a significant predictor for Luminal B, 
HER2+ or TNBC, and needs improvement on this aspect.

In the landscape of current research, several studies have yielded results 
akin to ours through the application of machine learning techniques 
across larger cohorts of patients (34). However, a common limitation 
among these studies is their exclusive focus on early-stage cancers, which 
narrows their applicability in the diverse spectrum of real-world clinical 
settings. Furthermore, while some research has successfully predicted 
the presence of specific biomarkers, such as HER2, or concentrated on 
singular molecular subtypes, like TNBC, these approaches do not fully 
encompass the complexity of breast cancer diagnosis and treatment 
(35, 36). In contrast, the present study is unique in presenting a model 
that mirrors the intricacies of actual clinical practice. It achieves this by 
incorporating a comprehensive range of molecular subtypes, spanning 
all cancer stages, and considering a wide array of significant biomarkers. 

Table 2. AUC of Cluster 1 model in predicting tumor grade, stage and prognostic markers and sensitivity, specificity, NPV, PPV, 

accuracy of the model at optimal cut-off point

Parameter AUC Sensitivity Specificity PPV NPV Accuracy

Tumor grade (1 vs. 2–3) 0.709 56% 88% 96% 29% 61%

T stage (T1–2 vs. T3–4) 0.7896 58% 90% 75% 80% 79%

N stage (N0 vs. N1–3) 0.7822 71% 79% 76% 74% 75%

N stage (N0–1 vs. N2–3) 0.7399 81% 59% 24% 95% 62%

ER+ vs. ER- 0.6702 67% 67% 85% 43% 67%

HER2+ vs. HER2- 0.6362 79% 48% 34% 87% 56%

Ki-67<14% vs. >14% 0.5895 54% 68% 90% 22% 57%

Luminal A vs. others 0.6581 74% 63% 25% 94% 65%

Luminal B vs. others 0.463

HER2+ vs. other 0.570

TNBC vs. others 0.6005 42% 79% 30% 87% 73%

Aggressive disease (High-grade, node 
positive TNBC) vs. others

0.724 100% 42% 11% 100% 46%

DCE images were segmented and Haralick texture features were extracted, AUC: Area under receiver operating characteristic curve, HER2: Human 
epidermal growth factor receptor 2, ER: Estrogen receptor, PR: Progesterone receptor, TNBC: Triple negative breast cancer, PPV: Positive predictive value, 
NPV: Negative predictive value

Figure 4. ROC (blue line) was performed for Cluster 1 model, and 
the figure shows the performance of our model in differentiating 
clinically aggressive tumor subtype (high-grade triple negative with 
lymph node metastasis) vs. other subtypes. The area under curve is 
0.7247 with p<0.05

ROC: Receiver operator curve
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This holistic approach not only enhances the model’s relevance but also 
significantly broadens its utility in clinical decision-making, offering 
a more nuanced tool for healthcare professionals navigating the 
multifaceted landscape of breast cancer treatment. The retrospective 
design of the study was one of the limitations. Including MRI images 
from different vendors may improve the real-life application of the 
model. As a drawback, images were analyzed in 2D. Volumetric texture 
parameters with a 3D model may result in better performance. In 
addition to conventional statistical methods, such as cluster analysis, 
novel machine or deep learning can be used to train a model for 
further improvement. Including more demographic parameters, such 
as patient age and history, and radiologic parameters such as lesion 
size, may increase the sensitivity and performance of the model. The 
proposed cut-off was purely based on sensitivity and specificity without 
considering changes in prevalence in different population or analyzing 
cost to specific population or institutions as part of the clinical 
management process. More comprehensive decision analysis into 
operating this model would take account of the cost (either financially 
or in terms of population level welfare such as quality adjusted life-year) 
is necessary.

In addition, the most common indications for breast MRI are 
suspected multifocal/centric disease, size discrepancy between clinical 
exam and imaging, or between mammography and ultrasound; ER-
negative disease or larger ER+ cancers with anticipated pre-operative 
systemic therapy, suspected anterior chest wall/nipple involvement and 
cancers identified in high-risk screening populations at supplemental 
screening. Due to these indications, there is a possibility that the 
cancers reported in our series are biased toward advanced disease or 
those patients who are likely to get neoadjuvant therapy. While we 
acknowledge this bias, we believe our series is representative of cancers 
imaged with MRI nationally, and hence from whom texture features 
can be extracted.

Our findings support earlier studies, which have reported correlation 
between breast cancer TNM stage and MRI imaging characteristics 
with similar ROC values and with the advantage of larger patient 
samples. The results of the present study indicate that whole tumor 
MRI texture analysis shows promise as a potential tool that can 
be integrated into clinical decision-making, in conjunction with 
histopathological markers, to distinguish low risk disease with high 
NPV.
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